Abstract
Abstract
The purpose of this paper is to study the behavior of magnetohydrodynamic (MHD) wave modes that propagate in compressible magnetic flux tubes with an elliptical cross section embedded in a magnetic environment. The dispersion relation that describes the behavior of MHD wave modes permitted in an elliptical magnetic flux tube is solved numerically. Distortion of the spatial structure of the purely real eigenmodes from the well-known circular flux tube model has been considered. It has been studied under both photospheric and coronal conditions. It has been shown that (i) solutions in the form of even Mathieu functions are more sensitive to the value of eccentricity than solutions with the form of odd Mathieu functions; (ii) if the ellipticity of the cross section of the magnetic flux tube increases, a sausage mode (m = 0) cannot be easily identified; (iii) even solutions that correspond to the fluting mode (m = 3) can be misinterpreted as a kink mode (m = 1) due to their similarities. In contrast to the fluting modes that are polarized along the major axis and strongly depend on the ellipticity of the magnetic flux tube, the kink and sausage surface modes are practically unaffected by ellipticity. Several examples of the spatial structure of the eigenmodes permitted in the pores and sunspots have been visualized. The solutions obtained in the approximation of cylindrical symmetry are in agreement with previous studies.
Funder
UKRI ∣ Science and Technology Facilities Council
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献