Regolith behavior under asteroid-level gravity conditions: low-velocity impacts into mm- and cm-sized grain targets

Author:

Brisset J.,Cox C.,Anderson S.,Hatchitt J.,Madison A.,Mendonca M.,Partida A.,Remie D.

Abstract

Context. In situ observations of small asteroids, such as Itokawa, Ryugu, and Bennu, show that surfaces covered by boulders and coarse terrain are frequent on such bodies. Regolith grain sizes have distributions on approximately mm and cm scales, and the behavior of such large grains in the very low-gravity environments of small body surfaces dictates their morphology and evolution. Aims. In order to support the understanding of natural processes (e.g., the recapturing of impact ejecta) or spacecraft-induced interactions (e.g., the fate of a small lander), we aim to experimentally investigate the response of coarse-grained target surfaces to very-low-speed impacts (below 2 m s−1). Methods. We present the outcome of 86 low-speed impacts of a cm-sized spherical projectile into a bed of simulated regolith, composed of irregular mm- and cm-sized grains. These impacts were performed under vacuum and microgravity conditions. Our results include measurements for the projectile coefficient of restitution and penetration depth, as well as ejecta production, speed, and mass estimation. As part of our data analysis, we compared our data set with impacts performed in similar conditions with fine grain regolith targets to determine the dependence of our measurements on the target grain size. Results. We find that impact outcomes include the frequent occurrence of projectile bouncing and tangential rolling on the target surface upon impact. Ejecta is produced for impact speeds higher than about 12 cm s−1, and ejecta speeds scale with the projectile to target the grain size ratio and the impact speed. Ejected mass estimations indicate that ejecta is increasingly difficult to produce for increasing grain sizes. Coefficients of restitution of rebounding projectiles do not display a dependency on the target grain size, unlike their maximum penetration depth, which can be scaled with the projectile to target grain size ratio. Finally, we compare our experimental measurements to spacecraft data and numerical work on Hayabusa 2’s MASCOT landing on the surface of the asteroid Ryugu.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3