INSPIRE: INvestigating Stellar Population In RElics

Author:

Spiniello C.ORCID,Tortora C.ORCID,D’Ago G.ORCID,Coccato L.ORCID,La Barbera F.,Ferré-Mateu A.ORCID,Napolitano N. R.ORCID,Spavone M.ORCID,Scognamiglio D.ORCID,Arnaboldi M.ORCID,Gallazzi A.ORCID,Hunt L.ORCID,Moehler S.ORCID,Radovich M.ORCID,Zibetti S.ORCID

Abstract

Context. Massive elliptical galaxies are thought to form through a two-phase process. At early times (z >  2), an intense and fast starburst forms blue and disk-dominated galaxies. After quenching, the remaining structures become red, compact, and massive (i.e. red nuggets). Then, a time-extended second phase, which is dominated by mergers, causes structural evolution and size growth. Given the stochastic nature of mergers, a small fraction of red nuggets survive, without any interaction, massive and compact until today: these are relic galaxies. Since this fraction depends on the processes dominating the size growth, counting relics at low-z is a valuable way of disentangling between different galaxy evolution models. Aims. In this paper, we introduce the INvestigating Stellar Population In RElics (INSPIRE) Project, which aims to spectroscopically confirm and fully characterise a large number of relics at 0.1 <  z <  0.5. We focus here on the first results based on a pilot study targeting three systems, representative of the whole sample. Methods. For these three candidates, we extracted 1D optical spectra over an aperture of r = 0.40″, which comprises ∼30% of the galaxies’ light, and we obtained the line-of-sight integrated stellar velocity and velocity dispersion. We also inferred the stellar [α/Fe] abundance from line-index measurements and mass-weighted age and metallicity from full-spectral fitting with single stellar population models. Results. Two galaxies have large integrated stellar velocity dispersion values (σ ∼ 250 km s−1), confirming their massive nature. They are populated by stars with super-solar metallicity and [α/Fe]. Both objects have formed ≥80% of their stellar mass within a short (∼0.5−1.0 Gyr) initial star formation episode occurred only ∼1 Gyr after the Big Bang. The third galaxy has a more extended star formation history and a lower velocity dispersion. Thus we confirm two out of three candidates as relics. Conclusions. This paper is the first step towards assembling the final INSPIRE catalogue that will set stringent lower limits on the number density of relics at z <  0.5, thus constituting a benchmark for cosmological simulations, and their predictions on number densities, sizes, masses, and dynamical characteristics of these objects.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3