Apsidal motion in the massive binary HD 152248

Author:

Rosu S.ORCID,Noels A.,Dupret M.-A.,Rauw G.ORCID,Farnir M.,Ekström S.ORCID

Abstract

Context. Apsidal motion in massive eccentric binaries offers precious information about the internal structure of the stars. This is especially true for twin binaries consisting of two nearly identical stars. Aims. We make use of the tidally induced apsidal motion in the twin binary HD 152248 to infer constraints on the internal structure of the O7.5 III-II stars composing this system. Methods. We build stellar evolution models with the code Clés assuming different prescriptions for the internal mixing occurring inside the stars. We identify the models that best reproduce the observationally determined present-day properties of the components of HD 152248, as well as their internal structure constants, and the apsidal motion rate of the system. We analyse the impact on the results of some poorly constrained input parameters in the models, including overshooting, turbulent diffusion, and metallicity. We further build “single” and “binary” GENEC models that account for stellar rotation to investigate the impacts of binarity and rotation. We discuss some effects that could bias our interpretation of the apsidal motion in terms of the internal structure constant. Results. The analysis of the Clés models reveals that reproducing the observed k2 value and rate of apsidal motion simultaneously with the other stellar parameters requires a significant amount of internal mixing (either turbulent diffusion, overshooting, or rotational mixing) or enhanced mass-loss. The results obtained with the GENEC models suggest that a single-star evolution model is sufficient to describe the physics inside this binary system. We suggest that, qualitatively, the high turbulent diffusion required to reproduce the observations could be partly attributed to stellar rotation. We show that higher-order terms in the apsidal motion are negligible. Only a very severe misalignment of the rotation axes with respect to the normal to the orbital plane could significantly impact the rate of apsidal motion, but such a high misalignment is highly unlikely in such a binary system. Conclusions. We infer an age estimate of 5.15 ± 0.13 Myr for the binary system and initial masses of 32.8 ± 0.6 M for both stars.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference51 articles.

1. Solar fusion cross sections. II. Theppchain and CNO cycles

2. Andrae R. 2010, ArXiv e-prints [arXiv:1009.2755]

3. Andrae R., Schulze-Hartung T., & Melchior P. 2010, ArXiv e-prints [arXiv:1012.3754]

4. The Chemical Composition of the Sun

5. $\vec{ UBVI}$ imaging photometry of NGC 6231

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3