Underestimation of the tidal force and apsidal motion in close binary systems by the perturbative approach: Comparisons with non-perturbative models

Author:

Fellay L.ORCID,Dupret M.-A.,Rosu S.ORCID

Abstract

Context. Stellar deformations play a significant role in the dynamical evolution of stars in binary systems, impacting the tidal dissipation and the outcomes of mass transfer processes. The prevalent method for modelling the deformations and tidal interactions of celestial bodies solely relies on the perturbative approach, which assumes that stellar deformations are minor perturbations to the spherical symmetry. An observable consequence of stellar deformations is the apsidal motion in eccentric systems, which has be observationally determined across numerous binary systems. Aims. Our objective is to assert the reliability of the perturbative approach when applied to close and strongly deformed binary systems. Methods. We have developed a non-perturbative 3D modelling method designed to account for high stellar deformations. We focus on comparing the properties of perturbatively deformed stellar models with our 3D models, particularly in terms of apsidal motion. Results. Our research highlights that the perturbative model becomes imprecise and underestimates the tidal force and rate of apsidal motion at a short orbital separation. This discrepancy primarily results from the first-order treatment in the perturbative approach, and cannot be rectified using straightforward mathematical corrections due to the strong non-linearity and numerous parameters of the problem. We have determined that our methodology affects the modelling of approximately 42% of observed binary systems with measured apsidal motion, introducing a discrepancy greater than 2% when the normalised orbital separation verifies q−1/5a(1 − e2)/R1 ≲ 6.5 (q is the mass ratio of the system, a is its semi-major axis, e is its orbital eccentricity and R1 is the radius of the primary star). Conclusions. The perturbative approach underestimates tidal interactions between bodies up to ∼40% for close low-mass binaries. All the subsequent modelling is impacted by our findings, in particular, the tidal dissipation is significantly underestimated. As a result, all binary stellar models are imprecise when applied to systems with a low orbital separation, and the outcomes of these models are also affected by these inaccuracies.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3