Effect of grain size distribution and size-dependent grain heating on molecular abundances in starless and pre-stellar cores

Author:

Sipilä O.ORCID,Zhao B.ORCID,Caselli P.

Abstract

We present a new gas-grain chemical model to constrain the effect of grain size distribution on molecular abundances in physical conditions corresponding to starless and pre-stellar cores. We simultaneously introduce grain-size dependence for desorption efficiency induced by cosmic rays (CRs) and for grain equilibrium temperatures. The latter were calculated with a radiative transfer code via custom dust models built for the present work. We explicitly tracked of ice abundances on a set of grain populations. We find that the size-dependent CR desorption efficiency affects ice abundances in a highly nontrivial way that depends on the molecule. Species that originate in the gas phase, such as CO, follow a simple pattern in which the ice abundance is highest on the smallest grains and these are the most abundant in the distribution. Some molecules, such as HCN, are instead concentrated on large grains throughout the time evolution; others, such as N2, are initially concentrated on large grains, but at late times on small grains because of grain-size-dependent competition between desorption and hydrogenation. Most of the water ice is on small grains at high medium density (n(H2) ≳ 106 cm−3), where the water ice fraction, with respect to the total water ice reservoir, can be as low as ~10−3 on large (>0.1 μm) grains. Allowing the grain equilibrium temperature to vary with grain size induces strong variations in relative ice abundances in low-density conditions in which the interstellar radiation field and in particular its ultraviolet component are not attenuated. Our study implies consequences not only for the initial formation of ices preceding the starless core stage, but also for the relative ice abundances on the grain populations going into the protostellar stage. In particular, if the smallest grains can lose their mantles owing to grain-grain collisions as the core is collapsing, the ice composition in the beginning of the protostellar stage could be very different than in the pre-collapse phase because the ice composition depends strongly on the grain size.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The cosmic-ray induced sputtering process on icy grains;Monthly Notices of the Royal Astronomical Society;2022-11-07

2. Temperature Spectra of Interstellar Dust Grains Heated by Cosmic Rays. III. Mixed-composition Grains;The Astrophysical Journal Supplement Series;2022-10-21

3. Towards a better understanding of ice mantle desorption by cosmic rays;Monthly Notices of the Royal Astronomical Society;2022-08-04

4. The Effects of Cosmic Rays on the Chemistry of Dense Cores;The Astrophysical Journal;2022-07-01

5. Icy molecule desorption in interstellar grain collisions;Monthly Notices of the Royal Astronomical Society;2022-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3