Propagation of Alfvén waves in the dusty interstellar medium

Author:

Hennebelle Patrick,Lebreuilly Ugo

Abstract

Context. Alfvén waves are fundamental magnetized modes that play an important role in the dynamics of magnetized flows such as the interstellar medium (ISM). Aims. In a weakly ionized medium, their propagation critically depends on the ionization rate as well as on the charge carriers. Depending on the gas density, these may be ions, electrons, or dust grains. The latter are particularly well known to have a drastic influence on the magnetic resistivities in the dense ISM, such as collapsing dense cores. Yet, in most calculations, for numerical reasons, the grain inertia is usually neglected. Methods. We carried out an analytical investigation of the propagation of Alfvén waves both in a single-size and multi-size grain medium such as the ISM and we obtained exact expressions giving wavenumbers as a function of wave frequencies. These expressions were then solved analytically or numerically by taking into account or neglecting grain inertia. Results. At long wavelengths, neglecting grain inertia is a very good approximation, however, the situation is rather different for wavelengths shorter than a critical value, which broadly scaled as 1/n, with n being the gas density. More precisely, when inertia is neglected, the waves do not propagate at short wavelengths or, due to the Hall effect, they develop for one circular polarization only, namely, a whistler mode such that ℛe(ω) ∝ k2. The other polarization presents a zero group velocity, namely, ℛe(ω) ∝ k0. When grain inertia is accounted for, the propagation of the two polarizations tend to be more symmetrical and the whistler mode is only present at density higher than ≃108 cm−3. At a lower density, it is replaced by a mode having ℛe(ω) ∝ k≃1.2. Interestingly, one of the polarization presents a distribution, instead of a single ω value. Importantly, for short wavelengths, wave damping is considerably reduced when inertia is properly accounted for. Conclusions. To properly handle the propagation of Alfvén waves at short wavelengths, it is necessary to self-consistently treat grain inertia. We discuss the possible consequences this may have in the context of diffuse and dense molecular gas regarding turbulence, magnetic braking, and protoplanetary disk formation as well as cosmic ray propagation in the dense ISM.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3