Cosmic-Ray Transport, Energy Loss, and Influence in the Multiphase Interstellar Medium

Author:

Bustard ChadORCID,Zweibel Ellen G.ORCID

Abstract

Abstract The bulk propagation speed of GeV-energy cosmic rays is limited by frequent scattering off hydromagnetic waves. Most galaxy evolution simulations that account for this confinement assume the gas is fully ionized and cosmic rays are well coupled to Alfvén waves; however, multiphase density inhomogeneities, frequently underresolved in galaxy evolution simulations, induce cosmic-ray collisions and ionization-dependent transport driven by cosmic-ray decoupling and elevated streaming speeds in partially neutral gas. How do cosmic rays navigate and influence such a medium, and can we constrain this transport with observations? In this paper, we simulate cosmic-ray fronts impinging upon idealized, partially neutral clouds and lognormally distributed clumps, with and without ionization-dependent transport. With these high-resolution simulations, we identify cloud interfaces as crucial regions where cosmic-ray fronts can develop a stairstep pressure gradient sufficient to collisionlessly generate waves, overcome ion–neutral damping, and exert a force on the cloud. We find that the acceleration of cold clouds is hindered by only a factor of a few when ionization-dependent transport is included, with additional dependencies on magnetic field strength and cloud dimensionality. We also probe how cosmic rays sample the background gas and quantify collisional losses. Hadronic gamma-ray emission maps are qualitatively different when ionization-dependent transport is included, but the overall luminosity varies by only a small factor, as the short cosmic-ray residence times in cold clouds are offset by the higher densities that cosmic rays sample.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3