Cosmic-ray diffusion in two local filamentary clouds

Author:

Kamal Youssef F. R.,Grenier I. A.ORCID

Abstract

Context. Hadronic interactions between cosmic rays (CRs) and interstellar gas have been probed in γ rays across the Galaxy. A fairly uniform CR distribution is observed up to a few hundred parsecs from the Sun, except in the Eridu cloud, which shows an unexplained 30–50% deficit in GeV to TeV CR flux. Aims. To explore the origin of this deficit, we studied the Reticulum cloud, which shares notable traits with Eridu: a comparable distance in the low-density region of the Local Valley and a filamentary structure of atomic hydrogen extending along a bundle of ordered magnetic-field lines that are steeply inclined to the Galactic plane. Methods. We measured the γ-ray emissivity per gas nucleon in the Reticulum cloud in the 0.16–63 GeV energy band using 14 years of Fermi-LAT data. We also derived interstellar properties that are important for CR propagation in both the Eridu and Reticulum clouds, at the same parsec scale. Results. The γ-ray emissivity in the Reticulum cloud is fully consistent with the average spectrum measured in the solar neighbourhood, but this emissivity, and therefore the CR flux, is 1.57 ± 0.09 times larger than in Eridu across the whole energy band. The difference cannot be attributed to uncertainties in gas mass. Nevertheless, we find that the two clouds are similar in many respects: both have magnetic-field strengths of a few micro-Gauss in the plane of the sky; both are in approximate equilibrium between magnetic and thermal pressures; they have similar turbulent velocities and sonic Mach numbers; and both show magnetic-field regularity with a dispersion in orientation lower than 10°–15° over large zones. The gas in Reticulum is colder and denser than in Eridu, but we find similar parallel diffusion coefficients around a few times 1028 cm2 s−1 in both clouds if CRs above 1 GV in rigidity diffuse on resonant, self-excited Alfvén waves that are damped by ion-neutral interactions. Conclusions. The loss of CRs in Eridu remains unexplained, but these two clouds provide important test cases to further study how magnetic turbulence, line tangling, and ion-neutral damping regulate CR diffusion in the dominant gas phase of the interstellar medium.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3