A major asymmetric ice trap in a planet-forming disk

Author:

Leemker M.ORCID,Booth A. S.ORCID,van Dishoeck E. F.ORCID,van der Marel N.ORCID,Tabone B.ORCID,Ligterink N. F. W.ORCID,Brunken N. G. C.ORCID,Hogerheijde M. R.ORCID

Abstract

Context. Most well-resolved disks observed with the Atacama Large Millimeter/submillimeter Array (ALMA) show signs of dust traps. These dust traps set the chemical composition of the planet-forming material in these disks, as the dust grains with their icy mantles are trapped at specific radii and could deplete the gas and dust at smaller radii of volatiles. Aims. In this work, we analyse the first detection of nitric oxide (NO) in a protoplanetary disk. We aim to constrain the nitrogen chemistry and the gas-phase C/O ratio in the highly asymmetric dust trap in the Oph-IRS 48 disk. Methods. We used ALMA observations of NO, CN, C2H, and related molecules in the Oph-IRS 48 disk. We modeled the effect of the increased dust-to-gas ratio in the dust trap on the physical and chemical structure using a dedicated nitrogen chemistry network in the thermochemical code DALI. Furthermore, we explored how ice sublimation contributes to the observed emission lines. Finally, we used the model to put constraints on the nitrogen-bearing ices. Results. Nitric oxide (NO) is only observed at the location of the dust trap, but CN and C2H are not detected in the Oph-IRS 48 disk. This results in an CN/NO column density ratio of <0.05 and thus a low C/O ratio at the location of the dust trap. Models show that the dust trap cools the disk midplane down to ~30 K, just above the NO sublimation temperature of ~25 K. The main gas-phase formation pathways to NO though OH and NH in the fiducial model predict NO emission that is an order of magnitude lower than what has been observed. The gaseous NO column density can be increased by factors ranging from 2.8 to 10 when the H2O and NH3 gas abundances are significantly boosted by ice sublimation. However, these models are inconsistent with the upper limits on the H2O and OH column densities derived from Herschel PACS observations and the upper limit on CN derived from ALMA observations. As the models require an additional source of NO to explain its detection, the NO seen in the observations is likely the photodissociation product of a larger molecule sublimating from the ices. The non-detection of CN provides a tighter constraint on the disk C/O ratio than the C2H upper limit. Conclusions. We propose that the NO emission in the Oph-IRS 48 disk is closely related to the nitrogen-bearing ices sublimating in the dust trap. The non-detection of CN constrains the C/O ratio both inside and outside the dust trap to be <1 if all nitrogen initially starts as N2 and ≤ 0.6, consistent with the Solar value, if (at least part of) the nitrogen initially starts as N or NH3.

Funder

Netherlands Research School for Astronomy

European Research Council

Dutch Research Council

Swiss National Science Foundation Ambizione

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference138 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3