A kinematically detected planet candidate in a transition disk

Author:

Stadler J.ORCID,Benisty M.ORCID,Izquierdo A.ORCID,Facchini S.ORCID,Teague R.ORCID,Kurtovic N.ORCID,Pinilla P.ORCID,Bae J.ORCID,Ansdell M.ORCID,Loomis R.ORCID,Mayama S.ORCID,Perez L. M.ORCID,Testi L.

Abstract

Context. Transition disks are protoplanetary disks with inner cavities possibly cleared by massive companions. Observing them at high resolution is ideal for mapping their velocity structure and probing companion–disk interactions. Aims. We present Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 dust and gas observations of the transition disk around RXJ1604.3–2130 A, known to feature nearly symmetric shadows in scattered light, and aim to search for non-Keplerian features. Methods. We studied the 12CO line channel maps and moment maps of the line-of-sight velocity and peak intensity. We fitted a Keplerian model of the channel-by-channel emission to study line profile differences and produced deprojected radial profiles for all velocity components. Results. The 12CO emission is detected out to R ∼ 1.8″ (265 au). It shows a cavity inward of 0.39″ (56 au) and within the dust continuum ring (at ∼0.56″, i.e., 81 au). Azimuthal brightness variations in the 12CO line and dust continuum are broadly aligned with the shadows detected in scattered-light observations. We find a strong localized non-Keplerian feature toward the west within the continuum ring (at R = 41 ± 10 au and PA = 280 ± 2°). It accounts for Δvϕ/vkep ∼ 0.4 or Δvz/vkep ∼ 0.04, depending on if the perturbation is in the rotational or vertical direction. A tightly wound spiral is also detected and extends over 300° in azimuth, possibly connected to the localized non-Keplerian feature. Finally, a bending of the iso-velocity contours within the gas cavity indicates a highly perturbed inner region, possibly related to the presence of a misaligned inner disk. Conclusions. While broadly aligned with the scattered-light shadows, the localized non-Keplerian feature cannot be solely due to changes in temperature. Instead, we interpret the kinematical feature as tracing a massive companion located at the edge of the dust continuum ring. We speculate that the spiral is caused by buoyancy resonances driven by planet–disk interactions. However, this potential planet at ∼41 au cannot explain the gas-depleted cavity, the low accretion rate, and the misaligned inner disk, which suggests the presence of another companion closer in.

Funder

European Research Council

ANID BASAL

ANID

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3