Detailed composition of iron ions in interplanetary coronal mass ejections based on a multipopulation approach

Author:

Gu ChaoranORCID,Heidrich-Meisner VerenaORCID,Wimmer-Schweingruber Robert F.ORCID,Yao ShuoORCID

Abstract

Context. Coronal mass ejections (CMEs) are extremely dynamical, large-scale events in which plasma – but not only the coronal plasma – is ejected into interplanetary space. If a CME is detected in situ by a spacecraft located in the interplanetary medium, it is then called an interplanetary coronal mass ejection (ICME). This solar activity has been studied widely since coronagraphs were first flown into space in the early 1970s. Aims. Charge states of heavy ions reflect important information about the coronal temperature profile due to the freeze-in effect and it is estimated that iron ions freeze in at heights of ∼5 solar radii. However, the measured charge-state distribution of iron ions cannot be composed of only one single group of plasma. To identify the different populations of iron charge-state composition of ICMEs and determine their sources, we developed a model that independently uses two, three, and four populations of iron ions to fit the measured charge-state distribution in ICMEs detected by the Advanced Composition Explorer (ACE) at 1 AU. Methods. Three parameters are used to identify a certain population, namely freeze-in temperature, relative abundance, and kappa value (κ), which together describe the potential non-Maxwellian kappa distributions of coronal electrons. Our method chooses the reduced chi-squared to describe the goodness of fit of the model to the observations. The parameters of our model are optimized with the covariance-matrix-adaptation evolution strategy (CMA-ES). Results. Two major types of ICMEs are identified according to the existence of hot material, and both, that is, the cool type and the hot type, have two main subtypes. Different populations in those types have their own features related to freeze-in temperature and κ. The electron velocity distribution function usually contains a significant hot tail in typical coronal material and hot material, while the Maxwellian distribution appears more frequently in mid-temperature material. Our model is also suitable for all types of solar wind and the existence of hot populations as well as the change of temperatures of individual populations may indicate boundaries between ICMEs and individual solar wind streams.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3