High energy laser & systems to neutralise stellar coronal mass ejections (CME) plasma

Author:

Lutz KolemannORCID,Trevino Terry

Abstract

With CME plasma and shockwave travelling at 600+ km/sec, active methods such as high energy electron lasers (HEL) and mirrors are effective at making contact with ionised atoms in CME. Electrons pulsed from kW to MW laser(s) could polarise ionised atoms such as Fe16+, O7/8+, Mg, He2+,etc to fill valence pairs. As high-FIP atoms are electromagnetically trapped with a higher susceptibility from lower e- density and temperatures, CME plasma clouds can be neutralised, separated, and reduced in velocity trajectory around planet. Study outlines interactions between Electron Laser and CME plasma cloud, orbital geometry, build of high energy lasers, subsystems, as well as recoils, and cloud charge dynamics with e- interactions to neutralise CME particles. Additional space-based systems are designed such as mirrors in closer orbit to align lower velocity light beams. In approaching higher electron recombination and FIP ionisation of laser-plasma ion cluster density, max absorption of e- to CME could be approached with similar beam, CME, mirror angles and alignment, where e- couple and fill valence shells. Models evaluate efficacy of coherent laser beams of charged electrons, X-rays, infrared (IR), and/or electron/radio Hz to polarize CME column charge densities, with optimal CME scatter geometry and time window. Low cost ground experiments are discussed. Models suggest every ~1 km gap laser creates when CME t=8.255min creates a 10,067 km gap for Earth to orbit through. Such a HEL laser, reflecting mirrors, and space systems could neutralize plasma CME Cloud within 92.818M mi (Sun-Earth distance) and mitigate effects and trillion dollar costs from Carrington-type CME flares, and supernovae.

Publisher

MedCrave Group Kft.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3