Abstract
Abstract
Energetic flares and associated coronal mass ejections (CMEs) from young magnetically active solar-like stars can play a critical role in setting conditions for atmospheric escape as well as penetration of accelerated particles into their atmospheres that promotes formation of biologically relevant molecules. We have used the observationally reconstructed magnetic field of the 0.7 Gyr young Sun’s twin, k
1
Ceti, to study the effects of CME deflections in the magnetic corona of the young Sun and their effects on the impact frequency on the early Venus, Earth, and Mars. We find that the coronal magnetic field deflects the CMEs toward the astrospheric current sheet. This effect suggests that CMEs tend to propagate within a small cone about the ecliptic plane increasing the impact frequency of CMEs with planetary magnetospheres near this plane to ∼30% or by a factor of 6 as compared to previous estimate by Airapetian et al. Our model has important implications for the rise of prebiotic chemistry on early terrestrial planets as well as terrestrial-type exoplanets around young G-K dwarfs.
Funder
NASA ISFM SEEC and Exobiology
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献