Optical and near-infrared spectroscopy of the black hole transient 4U 1543–47 during its 2021 ultra-luminous state

Author:

Sánchez-Sierras J.ORCID,Muñoz-Darias T.ORCID,Casares J.ORCID,Panizo-Espinar G.ORCID,Armas Padilla M.ORCID,Corral-Santana J.ORCID,Cúneo V. A.ORCID,Mata Sánchez D.ORCID,Motta S. E.ORCID,Ponti G.,Steeghs D.,Torres M. A. P.ORCID,Vincentelli F.ORCID

Abstract

We present simultaneous optical and near-infrared spectra obtained during the 2021 outburst of the black hole transient 4U 1543–47. The X-ray hardness-intensity diagram and the comparison with similar systems reveal a luminous outburst, probably reaching the Eddington luminosity, as well as a long-lasting excursion to the so-called ultra-luminous state. VLT/X-shooter spectra were taken in two epochs 14 days apart during the early and brightest part of the outburst, while the source was in this ultra-luminous accretion state. The data show strong H and He I emission lines, as well as high-excitation He II and O III transitions. Most lines are single-peaked in both spectra, except for the O III lines that exhibit evident double-peaked profiles during the second epoch. The Balmer lines are embedded in broad absorption wings that we believe are mainly produced by the contribution of the A2V donor to the optical flux, which we estimate to be in the range of 11–14% in the r band during our observations. Although no conspicuous outflow features are found, we observe some wind-related line profiles, particularly in the near-infrared. Such lines include broad emission line wings and skewed red profiles, suggesting the presence of a cold (i.e., low ionisation) outflow with similar observational properties to those found in other low-inclination black hole transients.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3