Microlensing of the broad emission line region in the lensed quasar J1004+4112

Author:

Hutsemékers Damien,Sluse DominiqueORCID,Savić ĐorđeORCID,Richards Gordon T.ORCID

Abstract

J1004+4112 is a lensed quasar for which the first broad emission line profile deformations due to microlensing were identified. Detailed interpretations of these features have nevertheless remained controversial. Based on 15 spectra obtained from 2003 to 2018, in this work, we revisit the microlensing effect that distorts the C IV broad emission line profile in J1004+4112. We take advantage of recent measurements of the image macro-magnification ratios, along with the fact that at one epoch, image B was not microlensed, thus constituting a reference spectrum to unambiguously characterize the microlensing effect observed in image A. After disentangling the microlensing in images A and B, we show that the microlensing-induced line profile distortions in image A, although variable, are remarkably similar over a period of 15 years. We find they are characterized by a strong magnification of the blue part of the line profile, a strong demagnification of the red part of the line profile, and a small-to-negligible demagnification of the line core. We used the microlensing effect, characterized by either the full magnification profile of the C IV emission line or a set of four integrated indices, to constrain the broad emission-line region (BLR) size, geometry, and kinematics. For this purpose, we modeled the deformation of the emission lines considering three simple, representative BLR models: a Keplerian disk, an equatorial wind, and a biconical polar wind, with various inclinations with respect to the line of sight. We find that the observed magnification profile of the C IV emission line in J1004+4112 can be reproduced with the simple BLR models we considered, without the need for more complex BLR features. The magnification appears dominated by the position of the BLR with respect to the caustic network – and not by the velocity-dependent size of the BLR. The favored models for the C IV BLR are either the Keplerian disk or the equatorial wind, depending on the orientation of the BLR axis with respect to the caustic network. We also find that the polar wind model can be discarded. We measured the C IV BLR half-light radius as r1/2=2.8−1.7+2.0 light-days. This value is smaller than the BLR radius expected from the radius-luminosity relation derived from reverberation mapping, but it is still in reasonable agreement given the large uncertainties.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3