Size and kinematics of the C IV broad emission line region from microlensing-induced line profile distortions in two gravitationally lensed quasars

Author:

Hutsemékers Damien,Sluse DominiqueORCID,Savić ĐorđeORCID

Abstract

Microlensing of the broad emission line region (BLR) in gravitationally lensed quasars produces line profile distortions that can be used to probe the BLR size, geometry, and kinematics. Based on single-epoch spectroscopic data, we analyzed the C IV line profile distortions due to microlensing in two quasars, SDSS J133907.13+131039.6 (J1339) and SDSS J113803.73+031457.7 (J1138), complementing previous studies of microlensing in the quasars Q2237+0305 and J1004+4112. J1339 shows a strong, asymmetric line profile deformation, while J1138 shows a more modest, symmetric deformation, confirming the rich diversity of microlensing-induced spectral line deformations. To probe the C IV BLR, we compared the observed line profile deformations to simulated ones. The simulations are based on three simple BLR models, a Keplerian disk (KD), an equatorial wind (EW), and a polar wind (PW), of various sizes, inclinations, and emissivities. These models were convolved with microlensing magnification maps specific to the microlensed quasar images, which produced a large number of distorted line profiles. The models that best reproduce the observed line profile deformations were then identified using a Bayesian probabilistic approach. We find that the line profile deformations can be reproduced with the simple BLR models under consideration, with no need for more complex geometries or kinematics. The models with disk geometries (KD and EW) are preferred, while the PW model is definitely less likely. In J1339, the EW model is favored, while the KD model is preferred in Q2237+0305, suggesting that various kinematical models can dominate the C IV BLR. For J1339, we find the C IV BLR half-light radii to be r1/2 = 5.1−2.9+4.6 light-days and r1/2 = 6.7−3.8+6.0 light-days from spectra obtained in 2014 and 2017, respectively. They do agree within uncertainties. For J1138, the amplitude of microlensing is smaller and more dependent on the macro-magnification factor. From spectra obtained in 2005 (single epoch), we find r1/2 = 4.9−2.7+4.9 light-days and r1/2 = 12−8+13 light-days for two extreme values of the macro-magnification factor. Combining these new measurements with those previously obtained for the quasars Q2237+0305 and J1004+4112, we show that the BLR radii estimated from microlensing do follow the C IV radius–luminosity relation obtained from reverberation mapping, although the microlensing radii seem to be systematically smaller, which could indicate either a selection bias or a real offset.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3