Numerical simulations of prominence oscillations triggered by external perturbations

Author:

Liakh V.,Luna M.,Khomenko E.

Abstract

Context. Several energetic disturbances have been identified as triggers of large-amplitude oscillations (LAOs) in prominences. Observations show that Moreton or extreme ultraviolet waves excite prominence oscillations of the longitudinal, transverse, or mixed polarities. However, the mechanisms for the excitation of LAOs by these waves are not well understood. Aims. In this study, we aim to investigate mechanisms behind the triggering of LAOs via self-consistent perturbation produced by an eruption and via energetic waves coming from a distant energy source. Methods. We performed time-dependent numerical simulations in 2.5D and 2D setups, using the magnetohydrodynamic code MANCHA3D, involving a flux rope and dipped arcade magnetic configurations with an artificially loaded prominence mass in the magnetic dips. Two types of disturbances were applied to excite prominence oscillations. The first type involves perturbations produced self-consistently by an eruption, while the second type of perturbation is associated with the waves caused by an artificial energy release. Results. In the simulations of the eruption, we find that this eruption by itself does not produce LAOs in the prominence located in its vicinity. Its only effect is in inclining the magnetic configuration of the prominence. While the erupting flux rope rises, an elongated current sheet forms behind it. This current sheet becomes unstable and breaks into plasmoids. The downward-moving plasmoids cause perturbations in the velocity field by merging with the post-reconnection loops. This velocity perturbation propagates in the surroundings and enters the flux rope, causing the disturbance of the prominence mass. The analysis of the oscillatory motions of the prominence plasma reveals the excitation of small-amplitude oscillations (SAOs), which are a mixture of longitudinal and vertical oscillations with short and long periods. In the simulations with a distant artificial perturbation, a fast-mode shock wave is produced and it gradually reaches two flux rope prominences at different distances. This shock wave excites vertical LAOs as well as longitudinal SAOs with similar amplitudes, periods, and damping times in both prominences. Finally, in the experiment with the external triggering of LAOs of solar prominences by an artificial perturbation in a dipped arcade prominence model, we find that although the vector normal to the front of a fast-mode shock wave is parallel to the spine of the dipped arcade well before the contact, this wave does not excite longitudinal LAOs. When the wave front approaches the prominence, it pushes the dense plasma down, establishing vertical LAOs and motions due to compression and rarefaction along the magnetic field. Conclusions. The external triggering of prominence oscillations is a complex process that excites LAOs or SAOs of the longitudinal or transverse polarizations or a mix of both types. It is not an easy task to produce LAOs in prominences because the triggering event requires a sufficient amount of energy. The orientation of the prominence axis with respect to the driving event may play a crucial role in triggering a certain type of LAOs.

Funder

European Research Council (ERC) under the European Union’s Horizon 2020

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3