Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures

Author:

Afanasyev A. N.,Zhukov A. N.

Abstract

Context. Global coronal waves associated with solar eruptions (the so-called EIT waves) often encounter coronal holes and solar active regions and interact with these magnetic structures. This interaction leads to a number of observed effects such as wave reflection and transmission. Aims. We consider the propagation of a large-scale coronal shock wave and its interaction with large-scale non-uniformities of the background magnetic field and plasma parameters. Methods. Using the Lare2d code, we performed 2.5-dimensional simulations of the interaction of a large-scale single-pulse fast-mode magnetohydrodynamic shock wave of weak-to-moderate intensity with the region of enhanced Alfvén speed as well as with that of reduced Alfvén speed. We analysed simple models of non-uniformity and the surrounding plasma to understand the basic effects in wave propagation. Results. We found the reflected waves of plasma compression and rarefaction, transmitted waves that propagate behind or ahead of the main part of the wave, depending on properties of the plasma non-uniformity, and secondary wave fronts. The obtained results are important to the correct interpretation of the global coronal wave propagation in the solar corona, understanding of theoretical aspects of the interaction of large-scale coronal shock waves with large-scale coronal magnetic structures, and diagnostics of coronal plasma parameters.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3