Capabilities of bisector analysis of the Si I 10 827 Å line for estimating line-of-sight velocities in the quiet Sun

Author:

González Manrique S. J.ORCID,Quintero Noda C.ORCID,Kuckein C.ORCID,Ruiz Cobo B.ORCID,Carlsson M.ORCID

Abstract

We examine the capabilities of a fast and simple method to infer line-of-sight (LOS) velocities from observations of the photospheric Si I 10 827 Å line. This spectral line is routinely observed together with the chromospheric He I 10 830 Å triplet as it helps to constrain the atmospheric parameters. We study the accuracy of bisector analysis and a line core fit of Si I 10 827 Å. We employ synthetic profiles starting from the Bifrost enhanced network simulation. The profiles are computed solving the radiative transfer equation, including non-local thermodynamic equilibrium effects on the determination of the atomic level populations of Si I. We found a good correlation between the inferred velocities from bisectors taken at different line profile intensities and the original simulation velocity at given optical depths. This good correlation means that we can associate bisectors taken at different line-profile percentages with atmospheric layers that linearly increase as we scan lower spectral line intensities. We also determined that a fit to the line-core intensity is robust and reliable, providing information about atmospheric layers that are above those accessible through bisectors. Therefore, by combining both methods on the Si I 10 827 Å line, we can seamlessly trace the quiet-Sun LOS velocity stratification from the deep photosphere to higher layers until around logτ = −3.5 in a fast and straightforward way. This method is ideal for generating quick-look reference images for future missions like the Daniel K. Inoue Solar Telescope and the European Solar Telescope, for example.

Funder

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Erasmus+

Norges Forskningsråd

Ministerio de Economía y Competitividad

H2020 European Institute of Innovation and Technology

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3