Hunting for hot corinos and WCCC sources in the OMC-2/3 filament

Author:

Bouvier M.ORCID,López-Sepulcre A.,Ceccarelli C.,Kahane C.,Imai M.,Sakai N.,Yamamoto S.,Dagdigian P. J.

Abstract

Context. Solar-like protostars are known to be chemically rich, but it is not yet clear how much their chemical composition can vary and why. So far, two chemically distinct types of Solar-like protostars have been identified: hot corinos, which are enriched in interstellar Complex Organic Molecules, such as methanol (CH3OH) or dimethyl ether (CH3OCH3), and warm carbon chain chemistry (WCCC) objects, which are enriched in carbon chain molecules, such as butadiynyl (C4H) or ethynyl radical (CCH). However, none of these have been studied so far in environments similar to that in which our Sun was born, that is, one that is close to massive stars. Aims. In this work, we search for hot corinos and WCCC objects in the closest analogue to the Sun’s birth environment, the Orion Molecular Cloud 2/3 (OMC-2/3) filament located in the Orion A molecular cloud. Methods. We obtained single-dish observations of CCH and CH3OH line emission towards nine Solar-like protostars in this region. As in other similar studies of late, we used the [CCH]/[CH3OH] abundance ratio in order to determine the chemical nature of our protostar sample. Results. Unexpectedly, we found that the observed methanol and ethynyl radical emission (over a few thousands au scale) does not seem to originate from the protostars but rather from the parental cloud and its photo-dissociation region, illuminated by the OB stars of the region. Conclusions. Our results strongly suggest that caution should be taken before using [CCH]/[CH3OH] from single-dish observations as an indicator of the protostellar chemical nature and that there is a need for other tracers or high angular resolution observations for probing the inner protostellar layers.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3