Quantum modeling of the optical spectra of carbon cluster structural families and relation to the interstellar extinction UV bump

Author:

Dubosq C.,Calvo F.,Rapacioli M.,Dartois E.,Pino T.,Falvo C.,Simon A.

Abstract

Context. The UV bump observed in the interstellar medium extinction curve of galaxies has been assigned to ππ transitions within the sp2 conjugated network of carbon grains. These grains are commonly thought to be graphitic particles or polycyclic aromatic hydrocarbons. However, questions are still open regarding the shape and degree of amorphization of these particles, which could account for the variations in the 2175 Å astronomical bump. Optical spectra of graphitic and onion-like carbon structures were previously obtained from dielectric constant calculations based on oscillating dipole models. In the present study, we compute the optical spectra of entire populations of carbon clusters using an explicit quantum description of their electronic structure for each individual isomer. Aims. Our aim is to determine the optical spectra of pure carbon clusters Cn=24,42,60 sorted into structural populations according to specific order parameters, namely asphericity and sp2 fraction, and to correlate these order parameters to the spectral features of the band in the region of the UV bump. Our comparison involves data measured for the astronomical UV bump as well as experimental spectra of carbon species formed in laboratory flames. Methods. The individual spectrum of each isomer is determined using the time-dependent density functional tight-binding method. The final spectrum for a given population is obtained by averaging the individual spectra for all isomers of a given family. Our method allows for an explicit description of particle shape, as well as structural and electronic disorder with respect to purely graphitic structures. Results. The spectra of the four main populations of cages, flakes, pretzels, and branched structures (Dubosq et al. 2019, A&A, 625, L11) all display strong absorption in the 2–8 eV domain, mainly due to ππ transitions. The absorption features, however, differ from one family to another and our quantum modeling indicates that the best candidates for the interstellar UV bump at 217.5 nm are cages and then flakes, while the opposite trend is found for the carbonaceous species formed in flame experiments; the other two families of pretzels and branched structures play a lesser role in both cases. Conclusions. Our quantum modeling shows the potential contribution of carbon clusters with a high fraction of conjugated sp2 atoms to the astronomical UV bump and to the spectrum of carbonaceous species formed in flames. While astronomical spectra are better accounted for using rather spherical isomers such as cages, planar flake structures are involved as a much greater component in flame experiments. Interestingly, these flake isomers have been proposed as likely intermediates in the formation mechanisms leading to buckminsterfullerene, which was recently detected in space. This study, although restricted here to the case of pure carbon clusters, will be extended towards several directions of astronomical relevance. In particular, the ability of the present approach to deal with large-scale molecular systems at an explicit quantum level of electronic structure and its transferable character towards different charge states and the possible presence of heteroatoms makes it the method of choice to address the important case of neutral and ionic hydrogenated compounds.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3