Ultraviolet electronic spectroscopy of heavily substituted naphthalene derivatives

Author:

Fréreux J. N.ORCID,Godard M.ORCID,Dartois E.ORCID,Pino T.ORCID

Abstract

Context. The so-called bump spectral signature observable on interstellar extinction curves, peaking at 217.5 nm, is commonly assigned to π*π transitions from carbonaceous carriers, but the exact nature of the carbonaceous carriers remains debated. Aims. To constrain the chemical structures associated with the bump carriers, we record and compare the UV spectra of a large variety of carbonaceous molecules to this interstellar feature. Methods. Large carbonaceous molecules, such as polycyclic aromatic hydrocarbons (PAHs), were produced by a combustion process stabilized at low pressure under rich flame conditions. Species were extracted and probed through resonance enhanced multiphoton ionization spectroscopy coupled to a time-of-flight mass spectrometer. Masses and absorption profiles of the carbonaceous molecules were measured, and their spectra were compared to the bump feature. Results. Species showing a specific mass progression starting at mass 128 u visible up to mass 394 u with a characteristic progression of +14 u present a common electronic absorption band profile peaking asymptotically around 220 nm. The first masses were assigned to a naphthalene C10H8 molecule and two of its derivatives: C10H7CH3 and C10H7C2H5. The mass progression of +14 u is explained by successive H atom substitutions by CH3 functional groups. This mass distribution was thus assigned to naphthalene derivatives with large aliphatic carbon substitution. This derivative family shows an electronic band assigned to S3S0 transitions involving electron promotion within the π aromatic orbitals of the naphathlene chromophore. More importantly, after a few substitutions, the position of the band converges asymptotically to a value close to the interstellar bump signature, independent of the molecule size. Conclusions. Based on the asymptotic behavior of the larger members in the species distribution, a similar band position is expected from double aromatic ring substructures within hydrogenated amorphous carbons (HACs). Similar to the conclusions of previous works, we find substituted naphthalene units as substructures of interstellar HACs to be good candidates as carriers of the bump feature.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3