Numerical simulations of large-amplitude oscillations in flux rope solar prominences

Author:

Liakh V.,Luna M.,Khomenko E.

Abstract

Context. Large-amplitude oscillations (LAOs) of solar prominences are a very spectacular, but poorly understood, phenomena. These motions have amplitudes larger than 10 km s−1 and can be triggered by the external perturbations such as Moreton or EIT waves. Aims. Our aim is to analyze the properties of LAOs using realistic prominence models and the triggering mechanism by external disturbances. Methods. We performed time-dependent numerical simulations of LAOs using a magnetic flux rope model with the two values of shear angle and density contrast. We studied the internal modes of the prominence using horizontal and vertical triggering. In addition, we used perturbation that arrives from outside to understand how such external disturbance can produce LAOs. Results. The period of longitudinal oscillations and its behavior with height show good agreement with the pendulum model. The period of the transverse oscillations remains constant with height, suggesting a global normal mode. The transverse oscillations typically have shorter periods than longitudinal oscillations. Conclusions. The periods of the longitudinal and transverse oscillations show only weak dependence on the shear angle of the magnetic structure and prominence density contrast. The external disturbance perturbs the flux rope exciting oscillations of both polarizations. Their properties are a mixture of those excited by purely horizontal and vertical driving.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3