The APEX Large CO Heterodyne Orion Legacy Survey (ALCOHOLS)

Author:

Stanke Th.,Arce H. G.,Bally J.,Bergman P.,Carpenter J.,Davis C. J.,Dent W.,Di Francesco J.,Eislöffel J.,Froebrich D.,Ginsburg A.,Heyer M.,Johnstone D.,Mardones D.,McCaughrean M. J.,Megeath S. T.,Nakamura F.,Smith M. D.,Stutz A.,Tatematsu K.,Walker C.,Williams J. P.,Zinnecker H.,Swift B. J.,Kulesa C.,Peters B.,Duffy B.,Kloosterman J.,Yιldιz U. A.,Pineda J. L.,De Breuck C.,Klein Th.

Abstract

Context. The Orion molecular cloud complex harbours the nearest Giant Molecular Clouds (GMCs) and the nearest site of high-mass star formation. Its young star and protostar populations are thoroughly characterized. The region is therefore a prime target for the study of star formation. Aims. Here, we verify the performance of the SuperCAM 64 pixel heterodyne array on the Atacama Pathfinder Experiment (APEX). We give a descriptive overview of a set of wide-field CO(3–2) spectral line cubes obtained towards the Orion GMC complex, aimed at characterizing the dynamics and structure of the extended molecular gas in diverse regions of the clouds, ranging from very active sites of clustered star formation in Orion B to comparatively quiet regions in southern Orion A. In a future publication, we will characterize the full population of protostellar outflows and their feedback over an entire GMC. Methods. We present a 2.7 square degree (130 pc2) mapping survey in the 12CO(3–2) transition, obtained using SuperCAM on APEX at an angular resolution of 19′′ (7600 AU or 0.037 pc at a distance of 400 pc), covering the main sites of star formation in the Orion B cloud (L 1622, NGC 2071, NGC 2068, Ori B9, NGC 2024, and NGC 2023), and a large patch in the southern part of the L 1641 cloud in Orion A. Results. We describe CO integrated line emission and line moment maps and position-velocity diagrams for all survey fields and discuss a few sub-regions in some detail. Evidence for expanding bubbles is seen with lines splitting into double components, often in areas of optical nebulosities, most prominently in the NGC 2024 H II region, where we argue that the bulk of the molecular gas is in the foreground of the H II region. High CO(3–2)/CO(1–0) line ratios reveal warm CO along the western edge of the Orion B cloud in the NGC 2023 & NGC 2024 region facing the IC 434 H II region. We see multiple, well separated radial velocity cloud components towards several fields and propose that L 1641-S consists of a sequence of clouds at increasingly larger distances. We find a small, seemingly spherical cloud, which we term “Cow Nebula” globule, north of NGC 2071. We confirm that we can trace high velocity line wings out to the “extremely high velocity” regime in protostellar molecular outflows for the NGC 2071-IR outflow and the NGC 2024 CO jet, and identify the protostellar dust core FIR4 (rather than FIR5) as the true driving source of the NGC 2024 monopolar outflow.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3