Abstract
Abstract
We present a two-epoch Hubble Space Telescope study of NGC 2071 IR highlighting HOPS 361-C, a protostar producing an arced 0.2 parsec-scale jet. The proper motions for the brightest knots decrease from 350 to 100 km s−1 with increasing distance from the source. The [Fe ii] and Paβ emission line intensity ratio gives a velocity jump through each knot of 40–50 km s−1. A new [O i] 63 μm spectrum, taken with the German REciever for Astronomy at Terahertz frequencies instrument aboard Stratospheric Observatory for Infrared Astronomy, shows a low line-of-sight velocity indicative of high jet inclination. Proper motions and jump velocities then estimate 3D flow speed for knots. Subsequently, we model knot positions and speeds with a precessing jet that decelerates. The measurements are matched with a precession period of 1000–3000 yr and half opening angle of 15°. The [Fe ii] 1.26-to-1.64 μm line intensity ratio determines visual extinction to each knot from 5 to 30 mag. Relative to ∼14 mag of extinction through the cloud from C18O emission maps, the jet is embedded at a 1/5–4/5 fractional cloud depth. Our model suggests the jet is dissipated over a 0.2 pc arc. This short distance may result from the jet sweeping through a wide angle, allowing the cloud time to fill cavities opened by the jet. Precessing jets contrast with nearly unidirectional protostellar jets that puncture host clouds and can propagate significantly farther.
Funder
Space Telescope Science Institute
Universities Space Research Association
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献