High-contrast study of the candidate planets and protoplanetary disk around HD 100546

Author:

Sissa E.,Gratton R.,Garufi A.,Rigliaco E.,Zurlo A.,Mesa D.,Langlois M.,de Boer J.,Desidera S.,Ginski C.,Lagrange A.-M.,Maire A.-L.,Vigan A.,Dima M.,Antichi J.,Baruffolo A.,Bazzon A.,Benisty M.,Beuzit J.-L.,Biller B.,Boccaletti A.,Bonavita M.,Bonnefoy M.,Brandner W.,Bruno P.,Buenzli E.,Cascone E.,Chauvin G.,Cheetham A.,Claudi R. U.,Cudel M.,De Caprio V.,Dominik C.,Fantinel D.,Farisato G.,Feldt M.,Fontanive C.,Galicher R.,Giro E.,Hagelberg J.,Incorvaia S.,Janson M.,Kasper M.,Keppler M.,Kopytova T.,Lagadec E.,Lannier J.,Lazzoni C.,LeCoroller H.,Lessio L.,Ligi R.,Marzari F.,Menard F.,Meyer M. R.,Mouillet D.,Peretti S.,Perrot C.,Potiron P. J.,Rouan D.,Salasnich B.,Salter G.,Samland M.,Schmidt T.,Scuderi S.,Wildi F.

Abstract

The nearby Herbig Be star HD 100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk, which is carved by at least two gaps. We observed the HD 100546 environment with high-contrast imaging exploiting several different observing modes of SPHERE, including data sets with and without coronagraphs, dual band imaging, integral field spectroscopy and polarimetry. The picture emerging from these different data sets is complex. Flux-conservative algorithm images clearly show the disk up to 200 au. More aggressive algorithms reveal several rings and warped arms that are seen overlapping the main disk. Some of these structures are found to lie at considerable height over the disk mid-plane at about 30 au. Our images demonstrate that the brightest wings close to the star in the near side of the disk are a unique structure, corresponding to the outer edge of the intermediate disk at ~ 40 au. Modeling of the scattered light from the disk with a geometrical algorithm reveals that a moderately thin structure (Hr = 0.18 at 40 au) can well reproduce the light distribution in the flux-conservative images. We suggest that the gap between 44 and 113 au spans between the 1:2 and 3:2 resonance orbits of a massive body located at ~ 70 au, which mightcoincide with the candidate planet HD 100546b detected with previous thermal infrared (IR) observations. In this picture, the two wings can be the near side of a ring formed by disk material brought out of the disk at the 1:2 resonance with the same massive object. While we find no clear evidence confirming detection of the planet candidate HD 100546c in our data, we find a diffuse emission close to the expected position of HD 100546b. This source can be described as an extremely reddened substellar object surrounded by a dust cloud or its circumplanetary disk. Its astrometry is broadly consistent with a circular orbital motion on the disk plane, a result that could be confirmed with new observations. Further observations at various wavelengths are required to fully understand the complex phenomenology of HD 100546.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3