NELIOTA: Methods, statistics, and results for meteoroids impacting the Moon

Author:

Liakos A.ORCID,Bonanos A. Z.,Xilouris E. M.,Koschny D.,Bellas-Velidis I.,Boumis P.,Charmandaris V.,Dapergolas A.,Fytsilis A.,Maroussis A.,Moissl R.

Abstract

Context. This paper contains results from the first 30 months of the NELIOTA project for near-Earth objects and meteoroids impacting the lunar surface. We present our analysis of the statistics concerning the efficiency of the campaign and the parameters of the projectiles and those of their impacts. Aims. The parameters of the lunar impact flashes are based on simultaneous observations in two wavelength bands. They are used to estimate the distributions of the masses, sizes, and frequency of the impactors. These statistics can have applications in both space engineering and science. Methods. The photometric fluxes of the flashes are measured using aperture photometry and their apparent magnitudes are calculated using standard stars. Assuming that the flashes follow a black body law of irradiation, the temperatures can be derived analytically, while the parameters of the projectiles are estimated using fair assumptions on their velocity and luminous efficiency of the impacts. Results. There have been 79 lunar impact flashes observed with the 1.2 m Kryoneri telescope in Greece. The masses of the meteoroids range between 0.7 g and 8 kg, and their respective sizes between 1 and 20 cm, depending on their assumed density, impact velocity, and luminous efficiency. We find a strong correlation between the observed magnitudes of the flashes and the masses of the meteoroids. Moreover, an empirical relation between the emitted energies of each band has been derived, allowing for an estimation of the physical parameters of the meteoroids that produce low energy impact flashes. Conclusions. The NELIOTA project has so far the highest detection rate and the faintest limiting magnitude for lunar impacts compared to other ongoing programs. Based on the impact frequency distribution on the Moon, we estimate that sporadic meteoroids with typical masses less than 100 g and sizes less than 5 cm enter the mesosphere of the Earth with a rate of ~108 meteoroids h−1 and also impact Moon with a rate of ~8 meteoroids h−1.

Funder

ESA

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference44 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3