NELIOTA: New results and updated statistics after 6.5 years of lunar impact flashes monitoring

Author:

Liakos A.ORCID,Bonanos A. Z.ORCID,Xilouris E. M.ORCID,Koschny D.ORCID,Bellas-Velidis I.ORCID,Boumis P.ORCID,Maroussis A.,Moissl R.

Abstract

We present results of the Near-Earth objects Lunar Impacts and Optical TrAnsients (NELIOTA) campaign for lunar impact flashes observed with the 1.2 m Kryoneri telescope. From August 2019 to August 2023, we report 113 validated and 70 suspected flashes. For the validated flashes, we calculate the physical parameters (masses, radii) of the corresponding projectiles, the temperatures developed during the impacts, and the expected crater sizes. For the multiframe flashes, we present light curves and thermal evolution plots. Using the whole sample of NELIOTA that encompasses 192 validated flashes in total from 2017, the statistics of the physical parameters of the meteoroids, the peak temperatures of the impacts, and the expected crater sizes has been updated. Using this large sample, empirical relations correlating the luminous energies per photometric band were derived and used to roughly estimate the parameters of 92 suspected flashes of the NELIOTA archive. For a typical value of the luminous efficiency, we found that the majority (>75%) of the impacting meteoroids have masses between 1 and 200 g, radii between 0.5 and 3 cm and produced craters up to 3.5 m. 85% of the peak temperatures of the impacts range between 2000 and 4500 K. Statistics regarding the magnitude decline and the cooling rates of the multiframe flashes are also presented. The recalculation of the appearance frequency of meteoroids (lying within the aforementioned ranges of physical parameters) on the Moon yields that the total lunar surface is bombarded with 7.4 sporadic meteoroids per hour and up to 12.6 meteoroids per hour when the Earth-Moon system passes through a strong meteoroid stream. By extrapolating these rates on Earth, the respective rates for various distances from its surface are calculated and used to estimate the probability of an impact of a meteoroid with a hypothetical infrastructure on the Moon, or with a satellite orbiting Earth for various impact surfaces and duration times of the missions.

Funder

esa

Horizon 2020 Framework Programme

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3