ALMA reveals a large structured disk and nested rotating outflows in DG Tauri B

Author:

de Valon A.ORCID,Dougados C.,Cabrit S.,Louvet F.,Zapata L. A.,Mardones D.

Abstract

We present Atacama Large Millimeter Array (ALMA) Band 6 observations at 14−20 au spatial resolution of the disk and CO(2-1) outflow around the Class I protostar DG Tau B in Taurus. The disk is very large, both in dust continuum (Reff, 95% = 174 au) and CO (RCO = 700 au). It shows Keplerian rotation around a 1.1 ± 0.2 M central star and two dust emission bumps at r = 62 and 135 au. These results confirm that large structured disks can form at an early stage where residual infall is still ongoing. The redshifted CO outflow at high velocity shows a striking hollow cone morphology out to 3000 au with a shear-like velocity structure within the cone walls. These walls coincide with the scattered light cavity, and they appear to be rooted within < 60 au in the disk. We confirm their global average rotation in the same sense as the disk, with a specific angular momentum ≃65 au km s−1. The mass-flux rate of 1.7−2.9 × 10−7 M yr−1 is 35 ± 10 times that in the atomic jet. We also detect a wider and slower outflow component surrounding this inner conical flow, which also rotates in the same direction as the disk. Our ALMA observations therefore demonstrate that the inner cone walls, and the associated scattered light cavity, do not trace the interface with infalling material, which is shown to be confined to much wider angles (> 70°). The properties of the conical walls are suggestive of the interaction between an episodic inner jet or wind with an outer disk wind, or of a massive disk wind originating from 2 to 5 au. However, further modeling is required to establish their origin. In either case, such massive outflow may significantly affect the disk structure and evolution.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3