Grain Growth and Dust Segregation Revealed by Multiwavelength Analysis of the Class I Protostellar Disk WL 17

Author:

Han IlseungORCID,Kwon WoojinORCID,Aso YusukeORCID,Bae JaehanORCID,Sheehan PatrickORCID

Abstract

Abstract The first step toward planet formation is grain growth from (sub)micrometer to millimeter/centimeter sizes. Grain growth has been reported not only in Class II protoplanetary disks but also in Class 0/I protostellar envelopes. However, early-stage grain growth occurring in Class 0/I stages has rarely been observed on the protostellar disk scale. Here we present the results from the Atacama Large Millimeter/submillimeter Array Band 3 (λ = 3.1 mm) and 7 (λ = 0.87 mm) archival data of the Class I protostellar disk WL 17 in the ρ Ophiuchus molecular cloud. Disk substructures are found in both bands, but they are different: while a central hole and a symmetric ring appear in Band 3, an off-center hole and an asymmetric ring are shown in Band 7. Furthermore, we obtain an asymmetric spectral index map with a low mean value of α = 2.28 ± 0.02, suggestive of grain growth and dust segregation on the protostellar disk scale. Our radiative transfer modeling verifies these two features by demonstrating that 10 cm sized large grains are symmetrically distributed, whereas 10 μm sized small grains are asymmetrically distributed. In addition, the analysis shows that the disk is expected to be massive and gravitationally unstable. We thus suggest a single Jupiter-mass protoplanet formed by gravitational instability as the origin of the ring-like structure, grain growth, and dust segregation identified in WL 17.

Funder

Korea Astronomy and Space Science Institute

Seoul National University

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ring Gap Structure around Class I Protostar WL 17;The Astrophysical Journal;2024-01-30

2. Chaotic Type I migration in turbulent discs;Monthly Notices of the Royal Astronomical Society: Letters;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3