Chaotic Type I migration in turbulent discs

Author:

Wu YinhaoORCID,Chen Yi-XianORCID,Lin Douglas N C

Abstract

ABSTRACT By performing global hydrodynamical simulations of accretion discs with driven turbulence models, we demonstrate that elevated levels of turbulence induce highly stochastic migration torques on low-mass companions embedded in these discs. This scenario applies to planets migrating within gravito-turbulent regions of protoplanetary discs as well as stars and black holes embedded in the outskirts of active galactic nucleus (AGN) accretion discs. When the turbulence level is low, linear Lindblad torque persists in the background of stochastic forces and its accumulative effect can still dominate over relatively long time-scales. However, in the presence of very stronger turbulence, classical flow patterns around the companion embedded in the disc are disrupted, leading to significant deviations from the expectations of classical Type I migration theory over arbitrarily long time-scales. Our findings suggest that the stochastic nature of turbulent migration can prevent low-mass companions from monotonically settling into universal migration traps within the traditional laminar disc framework, thus reducing the frequency of three-body interactions and hierarchical mergers compared to previously expected. We propose a scaling for the transition mass ratio from classical to chaotic migration q ∝ αR, where αR is the Reynolds viscosity stress parameter, which can be further tested and refined by conducting extensive simulations over the relevant parameter space.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3