Binary white dwarfs and decihertz gravitational wave observations: From the Hubble constant to supernova astrophysics

Author:

Maselli A.,Marassi S.,Branchesi M.

Abstract

Context. Coalescences of binary white dwarfs represent a copious source of information for gravitational wave interferometers operating in the decihertz band. Moreover, according to the double degenerate scenario, they have been suggested to be possible progenitors of supernovae (SNe) Type Ia events. Aims. In this paper we discuss the detectability of gravitational waves emitted by the inspiral of double white dwarfs. We focus on the constraints that can be derived on the source’s luminosity distance, and on other binary’s parameters, such as the angular momentum orientation. Methods. We explore the possibility of coincident detections of gravitational and electromagnetic signals; the latter comes from the observation of the supernova counterpart. Confirmation of the double degenerate scenario would allow one to use distances inferred in the gravitational wave channel to consistently calibrate SNe as standard candles. Results. We find that decihertz gravitational wave interferometers can measure the luminosity distance with relative accuracy better than 1% for binaries at 100 Mpc. We show how multimessenger observations can put strong constraints on the Hubble constant, which are tighter than current bounds at low redshift, and how they can potentially shed new light on the differences with early-universe measurements.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Significance of Fabry-Perot Cavities for Space Gravitational Wave Antenna DECIGO;Galaxies;2024-03-15

2. Lunar Gravitational-Wave Detection;Space Science Reviews;2023-10-20

3. Lensing of gravitational waves from tidal disruption events;Monthly Notices of the Royal Astronomical Society;2023-06-02

4. Identifying disappearance of a white dwarf binary with LISA;Monthly Notices of the Royal Astronomical Society;2023-05-11

5. Search for DA White Dwarf Binary Candidates from LAMOST DR7;Universe;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3