VLT/X-shooter spectroscopy of massive young stellar objects in the 30 Doradus region of the Large Magellanic Cloud

Author:

van Gelder M. L.,Kaper L.,Japelj J.,Ramírez-Tannus M. C.,Ellerbroek L. E.,Barbá R. H.,Bestenlehner J. M.,Bik A.,Gräfener G.,de Koter A.,de Mink S. E.,Sabbi E.,Sana H.,Sewiło M.,Vink J. S.,Walborn N. R.

Abstract

The process of massive star (M ≥ 8 M) formation is still poorly understood. Observations of massive young stellar objects (MYSOs) are challenging due to their rarity, short formation timescale, large distances, and high circumstellar extinction. Here, we present the results of a spectroscopic analysis of a population of MYSOs in the Large Magellanic Cloud. We took advantage of the spectral resolution and wavelength coverage of X-shooter (300−2500 nm), which is mounted on the European Southern Observatory Very Large Telescope, to detect characteristic spectral features in a dozen MYSO candidates near 30 Doradus, the largest starburst region in the Local Group hosting the most massive stars known. The X-shooter spectra are strongly contaminated by nebular emission. We used a scaling method to subtract the nebular contamination from our objects. We detect Hα, β, [O I] 630.0 nm, Ca II, infrared triplet [Fe II] 1643.5 nm, fluorescent Fe II 1687.8 nm, H2 2121.8 nm, Brγ, and CO bandhead emission in the spectra of multiple candidates. This leads to the spectroscopic confirmation of ten candidates as bona fide MYSOs. We compared our observations with photometric observations from the literature and find all MYSOs to have a strong near-infrared excess. We computed lower limits to the brightness and luminosity of the MYSO candidates, confirming the near-infrared excess and the massive nature of the objects. No clear correlation is seen between the Brγ luminosity and metallicity. Combining our sample with other LMC samples results in a combined detection rate of disk features, such as fluorescent Fe II and CO bandheads, which is consistent with the Galactic rate (40%). Most of our MYSOs show outflow features.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference119 articles.

1. X-shooter spectroscopy of young stellar objects

2. Andre P., Ward-Thompson D., & Barsony M. 2000, in Protostars and Planets IV, eds. Mannings V., Boss A. P., & Russell S. S., 59

3. BIPOLAR MOLECULAR OUTFLOWS FROM YOUNG STARS AND PROTOSTARS

4. Accretion disks in luminous young stellar objects

5. UBVRI passbands

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3