Doubly eclipsing systems

Author:

Zasche P.,Vokrouhlický D.,Wolf M.,Kučáková H.,Kára J.,Uhlař R.,Mašek M.,Henzl Z.,Cagaš P.

Abstract

Context. Only several doubly eclipsing quadruple stellar systems are known to date, and no dedicated effort to characterize population properties of these interesting objects has yet been made. Aims. Our first goal was to increase number of known doubly eclipsing systems such that the resulting dataset would allow us to study this category of objects via statistical means. In order to minimize biases, we used long-lasting, homogeneous, and well-documented photometric surveys. Second, a common problem of basically all known doubly eclipsing systems is the lack of proof that they constitute gravitationally bound quadruple system in the 2+2 architecture (as opposed to two unrelated binaries that are projected onto the same location in the sky by chance). When possible, we thus sought evidence for the relative motion of the two binaries. In that case, we tried to determine the relevant orbital periods and other parameters. Methods. We analysed photometric data for eclipsing binaries provided by the OGLE survey and we focused on the LMC fields. We found a large number of new doubly eclipsing systems (our discoveries are three times more numerous than the previously known cases in this dataset). In order to prove relative motion of the binaries about a common centre of mass, we made use of the fact that OGLE photometry covers several years. With a typical orbital period of days for the observed binaries, we sought eclipse time variations (ETVs) on the timescale comparable to a decade (this is the same method used for an archetype of the doubly eclipsing system, namely V994 Her). In the cases where we were able to detect the ETV period, the difference between the inner and outer periods in the quadruple system is large enough. This allows us to interpret ETVs primarily as the light-time effect, thus providing an interesting constraint on masses of the binaries. Results. In addition to significantly enlarging the database of known doubly eclipsing systems, we performed a thorough analysis of 72 cases. ETVs for 28 of them (39% of the studied cases) showed evidence of relative motion. Among these individual systems, we note OGLE BLG-ECL-145467, by far the most interesting case; it is bright (12.6 mag in I filter), consists of two detached binaries with periods of ≃3.3 d and ≃4.9 d (making it a candidate for a 3:2 resonant system) revolving about each other in only ≃1538 d. Distribution of the orbital period ratio PA/PB of binaries in 2+2 quadruples shows statistically significant excess at ≃1 and ≃1.5. The former is likely a natural statistical preference in weakly interacting systems with periods within the same range. The latter is thought to be evidence of a capture in the 3:2 mean motion resonance of the two binaries. This sets important constraints on evolutionary channels in these systems. Conclusions. The total number of doubly eclipsing systems increased to 146, more than 90% of which are at low declinations on the southern sky. This motivates us to use southern hemisphere facilities to further characterize these systems, and to seek possibilities to complement this dataset with northern sky systems.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3