Abstract
Context. Massive stars and their stellar winds are important for a number of feedback processes. The mass lost in the stellar wind can help determine the end-point of the star as a neutron star (NS) or a black hole (BH). However, the impact of mass loss on the post-main sequence evolutionary stage of massive stars is not well understood. Westerlund 1 is an ideal astrophysical laboratory in which to study massive stars and their winds in great detail over a large range of different evolutionary phases.
Aims. We aim to study the radio emission from Westerlund 1, in order to measure radio fluxes from the population of massive stars, and determine mass-loss rates and spectral indices where possible.
Methods. Observations were carried out in 2015 and 2016 with the Australia Telescope Compact Array (ATCA) at 5.5 and 9 GHz using multiple configurations, with maximum baselines ranging from 750 m to 6 km.
Results. Thirty stars are detected in the radio from the fully concatenated dataset, ten of which are Wolf-Rayet stars (WRs) (predominantly late type WN stars), five yellow hypergiants (YHGs), four red supergiants (RSGs), one luminous blue variable (LBV), the sgB[e] star W9, and several OB supergiants. New source detections in the radio are found for five WR stars, and five OB supergiants. These detections lead to evidence for three new OB supergiant binary candidates, which is inferred from derived spectral index limits.
Conclusions. Spectral indices and index limits were determined for massive stars in Westerlund 1. For cluster members found to have partially optically thick emission, mass-loss rates were calculated. Under the approximation of a thermally emitting stellar wind and a steady mass-loss rate, clumping ratios were then estimated for eight WRs. Diffuse radio emission was detected throughout the cluster. Detections of knots of radio emission with no known stellar counterparts indicate the highly clumped structure of this intra-cluster medium, likely shaped by a dense cluster wind.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献