Inferring high-redshift large-scale structure dynamics from the Lyman-αforest

Author:

Porqueres Natalia,Jasche Jens,Lavaux Guilhem,Enßlin Torsten

Abstract

One of the major science goals over the coming decade is to test fundamental physics with probes of the cosmic large-scale structure out to high redshift. Here we present a fully Bayesian approach to infer the three-dimensional cosmic matter distribution and its dynamics atz >  2 from observations of the Lyman-αforest. We demonstrate that the method recovers the unbiased mass distribution and the correct matter power spectrum at all scales. Our method infers the three-dimensional density field from a set of one-dimensional spectra, interpolating the information between the lines of sight. We show that our algorithm provides unbiased mass profiles of clusters, becoming an alternative for estimating cluster masses complementary to weak lensing or X-ray observations. The algorithm employs a Hamiltonian Monte Carlo method to generate realizations of initial and evolved density fields and the three-dimensional large-scale flow, revealing the cosmic dynamics at high redshift. The method correctly handles multi-modal parameter distributions, which allow constraining the physics of the intergalactic medium with high accuracy. We performed several tests using realistic simulated quasar spectra to test and validate our method. Our results show that detailed and physically plausible inference of three-dimensional large-scale structures at high redshift has become feasible.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TensorFlow Hydrodynamics Analysis for Ly-α Simulations;Astronomy and Computing;2024-07

2. Taiji-TianQin-LISA network: Precisely measuring the Hubble constant using both bright and dark sirens;Science China Physics, Mechanics & Astronomy;2023-12-29

3. Towards accurate field-level inference of massive cosmic structures;Monthly Notices of the Royal Astronomical Society;2023-10-18

4. Joint velocity and density reconstruction of the Universe with nonlinear differentiable forward modeling;Journal of Cosmology and Astroparticle Physics;2023-06-01

5. Why cosmic voids matter: nonlinear structure & linear dynamics;Journal of Cosmology and Astroparticle Physics;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3