Why cosmic voids matter: nonlinear structure & linear dynamics

Author:

Schuster Nico,Hamaus Nico,Dolag Klaus,Weller Jochen

Abstract

Abstract We use the Magneticum suite of state-of-the-art hydrodynamical simulations to identify cosmic voids based on the watershed technique and investigate their most fundamental properties across different resolutions in mass and scale. This encompasses the distributions of void sizes, shapes, and content, as well as their radial density and velocity profiles traced by the distribution of cold dark matter particles and halos. We also study the impact of various tracer properties, such as their sparsity and mass, and the influence of void merging on these summary statistics. Our results reveal that all of the analyzed void properties are physically related to each other and describe universal characteristics that are largely independent of tracer type and resolution. Most notably, we find that the motion of tracers around void centers is perfectly consistent with linear dynamics, both for individual, as well as stacked voids. Despite the large range of scales accessible in our simulations, we are unable to identify the occurrence of nonlinear dynamics even inside voids of only a few Mpc in size. This suggests voids to be among the most pristine probes of cosmology down to scales that are commonly referred to as highly nonlinear in the field of large-scale structure.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Why cosmic voids matter: mitigation of baryonic physics;Journal of Cosmology and Astroparticle Physics;2024-08-01

2. Cosmology from One Galaxy in a Void?;The Astrophysical Journal Letters;2024-07-24

3. Neutrino Mass Constraint from an Implicit Likelihood Analysis of BOSS Voids;The Astrophysical Journal;2024-07-01

4. Cosmological forecast of the void size function measurement from the CSST spectroscopic survey;Monthly Notices of the Royal Astronomical Society;2024-06-26

5. An antihalo void catalogue of the Local Super-Volume;Monthly Notices of the Royal Astronomical Society;2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3