Focal-plane wavefront sensing with the vector-Apodizing Phase Plate

Author:

Bos S. P.,Doelman D. S.,Lozi J.,Guyon O.,Keller C. U.,Miller K. L.,Jovanovic N.,Martinache F.,Snik F.

Abstract

Context. One of the key limitations of the direct imaging of exoplanets at small angular separations are quasi-static speckles that originate from evolving non-common path aberrations (NCPA) in the optical train downstream of the instrument’s main wavefront sensor split-off. Aims. In this article we show that the vector-Apodizing Phase Plate (vAPP) coronagraph can be designed such that the coronagraphic point spread functions (PSFs) can act as wavefront sensors to measure and correct the (quasi-)static aberrations without dedicated wavefront sensing holograms or modulation by the deformable mirror. The absolute wavefront retrieval is performed with a non-linear algorithm. Methods. The focal-plane wavefront sensing (FPWFS) performance of the vAPP and the algorithm are evaluated via numerical simulations to test various photon and read noise levels, the sensitivity to the 100 lowest Zernike modes, and the maximum wavefront error (WFE) that can be accurately estimated in one iteration. We apply these methods to the vAPP within SCExAO, first with the internal source and subsequently on-sky. Results. In idealized simulations we show that for 107 photons the root mean square (rms) WFE can be reduced to ∼λ/1000, which is 1 nm rms in the context of the SCExAO system. We find that the maximum WFE that can be corrected in one iteration is ∼λ/8 rms or ∼200 nm rms (SCExAO). Furthermore, we demonstrate the SCExAO vAPP capabilities by measuring and controlling the 30 lowest Zernike modes with the internal source and on-sky. On-sky, we report a raw contrast improvement of a factor ∼2 between 2 and 4 λ/D after five iterations of closed-loop correction. When artificially introducing 150 nm rms WFE, the algorithm corrects it within five iterations of closed-loop operation. Conclusions. FPWFS with the vAPP coronagraphic PSFs is a powerful technique since it integrates coronagraphy and wavefront sensing, eliminating the need for additional probes and thus resulting in a 100% science duty cycle and maximum throughput for the target.

Funder

European Research Council

JSPS

the Astrobiology Center (ABC) of the National Institutes of Natural Sciences, Japan

the Mt Cuba Foundation

the directors contingency fund at Subaru Telescope

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference82 articles.

1. The Self-Coherent Camera: a new tool for planet detection

2. The Adiabatic Phase and Pancharatnam's Phase for Polarized Light

3. SPHERE: the exoplanet imager for the Very Large Telescope

4. Boehle A., Glauser A. M., Kenworthy M. A., et al. 2018, in Ground-based and Airborne Instrumentation for Astronomy VII, Int. Soc. Opt. Photon., 10702, 107023Y

5. High‐Contrast Imaging from Space: Speckle Nulling in a Low‐Aberration Regime

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3