Estimating non-common path aberrations with an adaptive coronagraph

Author:

Radhakrishnan V. M.ORCID,Keller C. U.ORCID,Doelman N. J.,Por E. H.ORCID

Abstract

Context. The focal-plane contrast of exoplanet imagers is affected by non-common path aberrations (NCPAs) that the adaptive optics system cannot correct for because they occur after the wavefront has been measured. NCPA estimation is commonly based on the long-exposure science image. Phase retrieval algorithms are often used, and they mostly assume that the residual phase error right after the adaptive optics system and averaged over the integration time is zero. This assumption is not always correct, for instance when controlling the adaptive optics to maximize the focal-plane contrast at the location of an exoplanet, that is to say in an adaptive coronagraph. For such cases, we present a method to calculate the NCPA using the phase information derived from the wavefront sensor (WFS) data and the science focal-plane image. Aims. We aim to accurately estimate the NCPA phase in the presence of (residual) atmospheric turbulence with a nonzero average wavefront. We then aim to take the NCPA into account in the adaptive coronagraph controller and achieve a higher contrast. Methods. The WFS measures the wavefront throughout the integration time of the science image. We combine information from the recorded WFS phases to remove the effects of the nonzero average phase from the Point Spread Function (PSF) and to remove the effects of the residual turbulence averaging over time. Then we estimate the NCPA by applying a phase-diversity-based algorithm to the resulting images. Our method is currently limited to imagers with pupil-plane coronagraphs. Results. We are able to recover the NCPA in an adaptive coronagraph setting with 0.01 radian RMS residuals and with a residual turbulence phase error of approximately 0.4 radian RMS. When accounted for in a contrast-control scheme, the NCPA correction leads to an order of magnitude improvement of contrast and a 50% increase in Strehl ratio, in numerical simulations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3