Active minimization of non-common path aberrations in long-exposure imaging of exoplanetary systems

Author:

Singh Garima,Galicher Raphaël,Baudoz PierreORCID,Dupuis Olivier,Ortiz Manuel,Potier AxelORCID,Thijs Simone,Huby Elsa

Abstract

Context. Spectroscopy of exoplanets is very challenging because of the high star-planet contrast. A technical difficulty in the design of imaging instruments is the noncommon path aberrations (NCPAs) between the adaptive optics (AO) sensing and the science camera, which induce planet-resembling stellar speckles in the coronagraphic science images. In an observing sequence of several long exposures, quickly evolving NCPAs average out and leave behind an AO halo that adds photon noise to the planet detection. Static NCPA can be calibrated a posteriori using differential imaging techniques. However, NCPAs that evolve during the observing sequence do not average out and cannot be calibrated a posteriori. These quasi-static NCPAs are one of the main limitations of the current direct imaging instruments such as SPHERE, GPI, and SCExAO. Aims. Our aim is to actively minimize the quasi-static speckles induced in long-exposure images. To do so, we need to measure the quasi-static speckle field above the AO halo. Methods. The self-coherent camera (SCC) is a proven technique which measures the speckle complex field in the coronagraphic science images. It is routinely used on the THD2 bench to reach contrast levels of < 10−8 in the range 5 − 12 λ/D in space-related conditions. To test the SCC in ground conditions on THD2, we optically simulated the residual aberrations measured behind the SPHERE/VLT AO system under good observing conditions. Results. We demonstrate in the laboratory that the SCC can minimize the quasi-static speckle intensity in the science images down to a limitation set by the AO halo residuals. The SCC reaches 1σ raw contrast levels below 10−6 in the region 5 − 12 λ/D at 783.25 nm in our experiments. Conclusions. The results presented in this article reveal an opportunity for the current and future high-contrast imaging systems to adapt the SCC for real-time measurement and correction of quasi-static speckles in long-exposure science observations from the ground.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3