ALMA and NACO observations towards the young exoring transit system J1407 (V1400 Cen)

Author:

Kenworthy M. A.ORCID,Klaassen P. D.ORCID,Min M.,van der Marel N.ORCID,Bohn A. J.ORCID,Kama M.ORCID,Triaud A.,Hales A.,Monkiewicz J.,Scott E.,Mamajek E. E.

Abstract

Aims. Our aim was to directly detect the thermal emission of the putative exoring system responsible for the complex deep transits observed in the light curve for the young Sco-Cen star 1SWASP J140747.93-394542.6 (V1400 Cen, hereafter J1407), confirming it as the occulter seen in May 2007, and to determine its orbital parameters with respect to the star. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the field centred on J1407 in the 340 GHz (Band 7) continuum in order to determine the flux and astrometric location of the ring system relative to the star. We used the VLT/NACO camera to observe the J1407 system in March 2019 and to search for the central planetary mass object at thermal infrared wavelengths. Results. We detect no point source at the expected location of J1407, and derive an upper limit 3σ level of 57.6 μJy. There is a point source detected at an angular separation consistent with the expected location for a free-floating ring system that occulted J1407 in May 2007, with a flux of 89 μJy consistent with optically thin dust surrounding a massive substellar companion. At 3.8 μm with the NACO camera, we detect the star J1407 but no other additional point sources within 1.3 arcsec of the star, with a lower bound on the sensitivity of 6 MJup at the location of the ALMA source, and down to 4 MJup in the sky background limit. Conclusions. The ALMA upper limit at the location of J1407 implies that a hypothesised bound ring system is composed of dust smaller than 1 mm in size, implying a young ring structure. The detected ALMA source has multiple interpretations, including: (i) it is an unbound substellar object surrounded by warm dust in Sco-Cen with an upper mass limit of 6 MJup, or (ii) it is a background galaxy.

Funder

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3