Fermi Large Area Telescope observations of the fast-dimming Crab Nebula in 60–600 MeV

Author:

Yeung Paul K. H.ORCID,Horns Dieter

Abstract

Context. The Crab pulsar and its nebula are the origin of relativistic electrons which can be observed through their synchrotron and inverse Compton emission. The transition between synchrotron-dominated and inverse-Compton-dominated emissions takes place at ≈109 eV. Aims. The short-term (lasting for one week to months) flux variability of the synchrotron emission from the most energetic electrons is investigated with data from ten years of observations with the Fermi Large Area Telescope in the energy range from 60 MeV to 600 MeV. Methods. We reconstructed the off-pulse light curve reconstructed from phase-resolved data. The corresponding histogram of flux measurements was used to identify distributions of flux-states and the statistical significance of a lower-flux component was estimated with dedicated simulations of mock light curves. The energy spectra for different flux states were also reconstructed. Results. We confirm the presence of flaring-states which follow a log-normal flux distribution. Additionally, we discovered a low-flux state where the flux drops to as low as 18.4% of the intermediate-state average flux and remains there for several weeks. The transition time is observed to be as short as two days. The energy spectrum during the low-flux state resembles the extrapolation of the inverse-Compton spectrum measured at energies beyond several GeV energy, implying that the high-energy part of the synchrotron emission is dramatically depressed. Conclusions. The low-flux state found here and the transition time of at most ten days indicate that the bulk (>75%) of the synchrotron emission above 108 eV originates in a compact volume with apparent angular size of θ ≈ 0″​​.4 tvar/(5 d). We tentatively infer that the so-called inner knot feature is the origin of the bulk of the γ-ray emission.

Funder

DFG

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3