Coronal diagnostics of solar type III radio bursts using LOFAR and PSP observations

Author:

Nedal MohamedORCID,Kozarev Kamen,Zhang Peijin,Zucca Pietro

Abstract

Context. Solar type III radio bursts are common phenomena, recognized as the result of accelerated electron beams propagating through the solar corona. These bursts are of particular interest as they provide valuable information about the magnetic field and plasma conditions in the corona, which are difficult to measure directly. Aims. This study aims to investigate the ambiguous source and the underlying physical processes of the type III radio bursts that occurred on April 3, 2019, through the utilization of multi-wavelength observations from the Low-Frequency Array (LOFAR) radio telescope and the Parker Solar Probe (PSP) space mission, as well as incorporating results from a Potential Field Source Surface (PFSS) and magnetohydrodynamic (MHD) models. The primary goal is to identify the spatial and temporal characteristics of the radio sources, as well as the plasma conditions along their trajectories. Methods. We applied data preprocessing techniques to combine high- and low-frequency observations from LOFAR and PSP between 2.6 kHz and 80 MHz. We then extracted information on the frequency drift and speed of the accelerated electron beams from the dynamic spectra. Additionally, we used LOFAR interferometric observations to image the sources of the radio emission at multiple frequencies and determine their locations and kinematics in the corona. Lastly, we analyzed the plasma parameters and magnetic field along the trajectories of the radio sources using PFSS and MHD model results. Results. We present several notable findings related to type III radio bursts. Firstly, through our automated implementation, we were able to effectively identify and characterize 9 type III radio bursts in the LOFAR-PSP combined dynamic spectrum and 16 type III bursts in the LOFAR dynamic spectrum. We found that the frequency drift for the detected type III bursts in the combined spectrum ranges between 0.24 and 4 MHz s−1, while the speeds of the electron beams range between 0.013 and 0.12 C. Secondly, our imaging observations show that the electrons responsible for these bursts originate from the same source and within a short time frame of fewer than 30 min. Finally, our analysis provides informative insights into the physical conditions along the path of the electron beams. For instance, we found that the plasma density obtained from the magnetohydrodynamic algorithm outside a sphere (MAS) model is significantly lower than the expected theoretical density.

Funder

Bulgarian National Science Fund

European Union’s Horizon 2020 research and innovation program

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3