Tracking a Beam of Electrons from the Low Solar Corona into Interplanetary Space with the Low Frequency Array, Parker Solar Probe, and 1 au Spacecraft

Author:

Badman Samuel T.ORCID,Carley EoinORCID,Cañizares Luis AlbertoORCID,Dresing NinaORCID,Jian Lan K.ORCID,Lario DavidORCID,Gallagher Peter T.ORCID,Martínez Oliveros Juan C.ORCID,Pulupa MarcORCID,Bale Stuart D.ORCID

Abstract

Abstract Type III radio bursts are the result of plasma emission from mildly relativistic electron beams propagating from the low solar corona into the heliosphere where they can eventually be detected in situ if they align with the location of a heliospheric spacecraft. Here we observe a type III radio burst from 0.1 to 16 MHz using the Parker Solar Probe (PSP) FIELDS Radio Frequency Spectrometer (RFS) and from 20 to 80 MHz using the Low Frequency Array (LOFAR). This event was not associated with any detectable flare activity but was part of an ongoing type III and noise storm that occurred during PSP encounter 2. A deprojection of the LOFAR radio sources into 3D space shows that the type III radio burst sources were located on open magnetic field from 1.6 to 3 R and originated from a near-equatorial active region around longitude E48°. Combining PSP/RFS observations with WIND/WAVES and Solar Terrestrial Relations Observatory (STEREO) WAVES, we reconstruct the type III radio source trajectory in the heliosphere interior to PSP’s position, assuming ecliptic confinement. An energetic electron enhancement is subsequently detected in situ at the STEREO A spacecraft at compatible times, although the onset and duration suggests the individual burst contributes a subset of the enhancement. This work shows relatively small-scale flux emergence in the corona can cause the injection of electron beams from the low corona into the heliosphere, without needing a strong solar flare. The complementary nature of combined ground and space-based radio observations, especially in the era of PSP, is also clearly highlighted by this study.

Funder

NASA ∣ NASA Headquarters

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3