LeHaMoC: A versatile time-dependent lepto-hadronic modeling code for high-energy astrophysical sources

Author:

Stathopoulos S. I.ORCID,Petropoulou M.ORCID,Vasilopoulos G.,Mastichiadis A.

Abstract

Context. Recent associations of high-energy neutrinos with active galactic nuclei (AGN) have revived the interest in leptohadronic models of radiation from astrophysical sources. The rapid increase in the amount of acquired multi-messenger data will require fast numerical models that may be applied to large source samples. Aims. We develop a time-dependent leptohadronic code, LeHaMoC, that offers several notable benefits compared to other existing codes, such as versatility and speed. Methods. LeHaMoC solves the Fokker-Planck equations of photons and relativistic particles (i.e. electrons, positrons, protons, and neutrinos) produced in a homogeneous magnetized source that may also be expanding. The code utilizes a fully implicit difference scheme that allows fast computation of steady-state and dynamically evolving physical problems. Results. We first present test cases where we compare the numerical results obtained with LeHaMoC against exact analytical solutions and numerical results computed with ATHEvA, a well-tested code of similar philosophy but a different numerical implementation. We find a good agreement (within 10–30%) with the numerical results obtained with ATHEvA without evidence of systematic differences. We then demonstrate the capabilities of the code through illustrative examples. First, we fit the spectral energy distribution from a jetted AGN in the context of a synchrotron-self Compton model and a proton-synchrotron model using Bayesian inference. Second, we compute the high-energy neutrino signal and the electromagnetic cascade induced by hadronic interactions in the corona of NGC 1068. Conclusions. LeHaMoC is easily customized to model a variety of high-energy astrophysical sources and has the potential to become a widely utilized tool in multi-messenger astrophysics.

Funder

Hellenic Foundation for Research and Innovation

Publisher

EDP Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3