Application of neural networks to synchro-Compton blazar emission models

Author:

Tzavellas A.,Vasilopoulos G.ORCID,Petropoulou M.ORCID,Mastichiadis A.,Stathopoulos S. I.ORCID

Abstract

Context. Jets from supermassive black holes at the centers of active galaxies are the most powerful and persistent sources of electromagnetic radiation in the Universe. To infer the physical conditions in the otherwise out-of-reach regions of extragalactic jets, we usually rely on fitting their spectral energy distributions (SEDs). The calculation of radiative models for the jet’s non-thermal emission usually relies on numerical solvers of coupled partial differential equations. Aims. In this work, we use machine learning to tackle the problem of high computational complexity to significantly reduce the SED model evaluation time, which is necessary for SED fittings carried out with Bayesian inference methods. Methods. We computed the SEDs based on the synchrotron self-Compton model for blazar emission using the radiation code ATHEvA. We used them to train neural networks (NNs) to explore whether they can replace the original code, which is computationally expensive. Results. We find that a NN with gated recurrent unit neurons (GRUN) can effectively replace the ATHEvA leptonic code for this application, while it can be efficiently coupled with Markov chain Monte Carlo (MCMC) and nested sampling algorithms for fitting purposes. We demonstrate this approach through an application to simulated data sets, as well as a subsequent application to observational data. Conclusions. We present a proof-of-concept application of NNs to blazar science as the first step in a list of future applications involving hadronic processes and even larger parameter spaces. We offer this tool to the community through a public repository.

Funder

Hellenic Foundation for Research and Innovation

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3