Overview of the contributions from all lanthanide elements to kilonova opacity in the temperature range from 25 000 to 40 000 K

Author:

Carvajal Gallego H.,Deprince J.,Maison L.,Palmeri P.ORCID,Quinet P.

Abstract

Context. It is now well established that the neutron star (NS) merger is at the origin of the production of trans-iron heavy elements in the universe. These elements are therefore present in large quantities in the ejected matter, whose electromagnetic radiation, called kilonova, is characterized by a significant opacity due to the high density of spectral lines belonging to many heavy ions. Among these, the lanthanide ions play an essential role since, with their open 4f subshell, they have a considerable number of transitions that can absorb emitted light. The knowledge of the atomic structure and the radiative parameters of these ions as well as the determination of the corresponding opacities is therefore of paramount importance for the spectral analysis of kilonovae. Aims. The main goal of the present work is to determine the relative contributions of the different lanthanide elements to the opacity of the emission spectrum of a kilonova in its early phase, that is, a few hours after the NS merger, where the conditions are such that the temperature is between 25 000 and 40 000 K. At these temperatures, the lanthanide ions whose charge states are between V and VII are predominant. Methods. We used the pseudo-relativistic Hartree–Fock (HFR) method extensively to calculate the relevant atomic data (energy levels, wavelengths, and oscillator strengths) in La-Lu V-VII ions. The corresponding monochromatic opacities were estimated from the expansion formalism. Results. We calculated the spectroscopic parameters for a total of more than 800 million radiative transitions in all the ions considered. These data were used to estimate the expansion opacities and Planck mean opacities for all the lanthanide elements at early-phase kilonova conditions between 25 000 and 40 000 K, making it possible to deduce the respective contributions of each element as a function of temperature. Atomic calculations were also carried out with the fully relativistic Multiconfiguration Dirac-Hartree-Fock (MCDHF) method in the specific case of the Yb V ion, as the available experimental data had not yet been compared with the theoretical calculations in our previous studies on lanthanide ions.

Funder

F.R.S.-FNRS

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3