Opacity of the Highly Ionized Lanthanides and the Effect on the Early Kilonova

Author:

Banerjee SmaranikaORCID,Tanaka MasaomiORCID,Kato DaijiORCID,Gaigalas GediminasORCID,Kawaguchi KyoheiORCID,Domoto NanaeORCID

Abstract

Abstract We investigate the effect of the presence of lanthanides (Z = 57–71) on the kilonova at t ∼ 1 hr after the neutron star merger for the first time. For this purpose, we calculate the atomic structures and the opacities for selected lanthanides: Nd (Z = 60), Sm (Z = 62), and Eu (Z = 63). We consider the ionization degree up to 10th (XI), applicable for the ejecta at t ∼ a few hours after the merger, when the temperature is T ∼ 105 K. We find that the opacities for the highly ionized lanthanides are exceptionally high, reaching κ exp 1000 cm 2 g 1 for Eu, due to the highly dense energy levels. Using the new opacity, we perform radiative transfer simulations to show that the early light curves become fainter by a (maximum) factor of four, in comparison to lanthanide-free ejecta at t ∼ 0.1 days. However, the period at which the light curves are affected is relatively brief owing to the rapid time evolution of the opacity in the outermost layer of the ejecta. We predict that for a source at a distance of ∼100 Mpc, UV brightness for lanthanide-rich ejecta shows a drop to ∼21–22 mag at t ∼ 0.1 days and the UV peaks around t ∼ 0.2 days with a magnitude of ∼19 mag. Future detection of such a kilonova by an existing UV satellite like Swift or the upcoming UV satellite ULTRASAT will provide useful constraints on the abundance in the outer ejecta and the corresponding nucleosynthesis conditions in the neutron star mergers.

Funder

Grant-in-aid for Scientific Research from JSPS and MEXT

Grant-in-Aid for JSPS Fellows

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3