O Corona, where art thou? eROSITA’s view of UV-optical-IR variability-selected massive black holes in low-mass galaxies

Author:

Arcodia R.ORCID,Merloni A.ORCID,Comparat J.,Dwelly T.,Seppi R.,Zhang Y.,Buchner J.,Georgakakis A.,Haberl F.,Igo Z.,Kyritsis E.,Liu T.,Nandra K.,Ni Q.,Ponti G.,Salvato M.,Ward C.,Wolf J.,Zezas A.

Abstract

Finding massive black holes (MBHs, MBH ≈ 104–107 M) in the nuclei of low-mass galaxies $\left( {{M_*}\mathop {\mathop < \limits_ }\limits_ {{10}^{10}}{M_ \odot }} \right)$ is crucial to constrain seeding and growth of black holes over cosmic time, but it is particularly challenging due to their low accretion luminosities. Variability selection via long-term photometric ultraviolet, optical, or infrared (UVOIR) light curves has proved effective and identifies lower-Eddington ratios compared to broad and narrow optical spectral lines searches. In the inefficient accretion regime, X-ray and radio searches are effective, but they have been limited to small samples. Therefore, differences between selection techniques have remained uncertain. Here, we present the first large systematic investigation of the X-ray properties of a sample of known MBH candidates in dwarf galaxies. We extracted X-ray photometry and spectra of a sample of ~200 UVOIR variability-selected MBHs and significantly detected 17 of them in the deepest available SRG/eROSITA image, of which four are newly discovered X-ray sources and two are new secure MBHs. This implies that tens to hundreds of LSST MBHs will have SRG/eROSITA counterparts, depending on the seeding model adopted. Surprisingly, the stacked X-ray images of the many non-detected MBHs are incompatible with standard disk-corona relations, typical of active galactic nuclei, inferred from both the optical and radio fluxes. They are instead compatible with the X-ray emission predicted for normal galaxies. After careful consideration of potential biases, we identified that this X-ray weakness needs a physical origin. A possibility is that a canonical X-ray corona might be lacking in the majority of this population of UVOIR-variability selected low-mass galaxies or that unusual accretion modes and spectral energy distributions are in place for MBHs in dwarf galaxies. This result reveals the potential for severe biases in occupation fractions derived from data from only one waveband combined with SEDs and scaling relations of more massive black holes and galaxies.

Funder

NASA

ERC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3